If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x=16
We move all terms to the left:
3x^2-18x-(16)=0
a = 3; b = -18; c = -16;
Δ = b2-4ac
Δ = -182-4·3·(-16)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{129}}{2*3}=\frac{18-2\sqrt{129}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{129}}{2*3}=\frac{18+2\sqrt{129}}{6} $
| 0.2(4x+8)+2=12.4 | | x+2x-3=-4 | | x+139+x+71=360 | | y-1.88=7.82 | | Y=-300x+12,000 | | 5y+12+3y=-y+12+5 | | w+7=-3w+72 | | 7^2x+1=3^x+3 | | 30=2m+8 | | 5(2x-6)=6-6(3x-1) | | 11x=6-4 | | -3x+10=14 | | 4+1/2(6x-8)=2/8(9x+6)-8 | | u=5/7 | | 6/7u=5/7 | | 180-x=5× | | 5x+10(2)=12x-2 | | 8x-6(x-2)=-x | | 2x=28=9x | | 8j-7=26j-97 | | n=6=14 | | 50f-45=40f-15 | | v+85=18v-85 | | (3x^2-27)/(x-3)=0 | | 25=y11 | | 11q-30=9q-2 | | 10q+72=44q-30 | | 21q-62=24q-95 | | 6h+72=34h-96 | | 14n-9=9n+76 | | 14t-36=8t+60 | | 2d+70=19d-100 |